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Resume-Une onde acoustique longitudinale sinusoidale en fonction du temps se propage
dans une barre elastique dont Ie coefficient d'elasticite, la mas se specifique et la section droite
sont des fonctions aleatoires Ie long de l'axe. L'onde se reflechit partiellement sur les inhomo­
geneites successives qu'elle rencontre, de sorte que son amplitude diminue en moyenne de fa~on

exponentielle it partir du point d'excitation. Une methode de calcul du coefficient d'amortis­
sement moyen est donnee, et Ie resultat est compare avec des simulations numeriques.

Abstract-Harmonic longitudinal acoustical waves are propagated through elastic thin rods
whose elastic constant, density and crosssectional area are random functions of distance along
the bar from a point of excitation. Partial reflection on successive inhomogeneities reduce the
mean amplitude of waves, according to an exponential law, from the point of excitation. A
method for calculating the mean damping coefficient is given, and the result is checked against
numerical simulations.

INTRODUCTION

Le present rapport etudie la propagation d'ondes acoustiques longitudinales dans une
barre elastique dont les caracteristiques (coefficient d'elasticite, section droite, masse speci­
fique) varient de fa90n aleatoire Ie long de l'axe.

Si l'onde est sinusoidale en fonction du temps, son amplitude diminue en moyenne de
fa90n exponentielle a partir de l'extremite de la barre ou se fait l'excitation. Cela provient
de ce que l'onde se reflechit partiellement sur chacune des inhomogeneites qu'elle rencontre
Ie long de la barre, de sorte que l'onde transmise est d'autant plus petite que la barre est
plus longue. Vne barre de longueur infinie est totalement reflechissante.

Ce resultat a une valeur statistique; il est vrai pour presque toutes les valeurs de la frequ­
ence, mais il est en defaut dans des cas isoles, par exemple lorsque la frequence est celie
d'une vibration libre de la barre.

HYPOTHESES GENERALES

Nous supposons que Ie mouvement de chaque element de la barre est purement longitu­
dinal, parallele a I'axe. Cette condition est difficile a realiser, car sans precaution parti­
culiere, la barre prend une oscillation de flexion, par resonance parametrique. Pour eviter
cet effet parasite, il faut un guide convenable.

Nous supposons en outre que chaque section droite de la barre a un mouvement de transla­
tion, c'est-a-dire que tous les points d'une meme section ont la meme vitesse parallele al'axe
de la barre. En fait une section comprimee longitudinalement subit une dilatation radiale,
perpendiculairement al'axe (par suite du coefficient de Poisson). Notre hypothese neglige
l'effet de ce mouvement secondaire, ce qui revient it supposer que les longueurs d'onde sont
plus grandes que Ie diametre de la barre.
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Le mouvement d'une section est alors entierement defini par Ie deplacement d'un senl
point de cette section. Ce deplacement est fonction de J'abcisse de la section, c'est-a-dire de
la distance a une extremite de la barre, mesuree lorsque cette derniere est au repos (Fig. I).

Fig. 1. Epreuve d'une barre ahlatoire it section constante par morceaux.

D'autre part Ie deplacement depend du temps, c'est une fonction de deux variables:
abcisse et temps.

Nous supposons que les caracteristiques mecaniques de la barre au voisinage d'une
section sont suffisamment bien detinies par Ie coefficient d'elasticite (module d'Young), la
section droite et la masse specifique au repos. Cela signifie que la barre est un solide elastique
lineaire conservatif et de caracteristiques constantes dans Ie temps. La traction exercee, a
travers une section, par la partie de la barre situee a droite de la section sur la partie situee a
gauche est egalement une fonction de deux variables: abcisse et temps.

Nous supposons que Ie module d'Young, la section droite et la masse specifique sont des
fonctions discontinues de J'abcisse, et que ces fonctions sont aleatoires: les calculs que nous
faisons ne sont pas relatifs aune barre determinee, mais aun ensemble de barres differentes,
de caracteristiques plus ou moins voisines, et definies par une mesure de probabilite donnee.

Nous nous limiterons au cas des ondes harmoniques, c'est-a-dire sinusoidales en fonction
du temps.

EQUATIONS DU MOUVEMENT

L'etat de la barre est defini par deux fonctions (deplacement et traction) de deux variables
(abcisse et temps). Ces deux fonctions ne sont pas quelconques, mais satisfont aux deux lois
de la mecanique: relation de comportement et equilibre des forces.

La relation de comportement est la loi de Hooke. EIJe exprime qu'au voisinage de chaque
section droite, la traction est proportionnelle a J'aIJongement relatif a cet endroit.

L'equilibre des forces peut s'ecrire pour Ie morceau de barre situe entre deux sections
infiniment voisines. La force d'inertie est proportionneIJe ala derivee seconde du deplace­
ment par rapport au temps. La force de traction est la difference entre la traction sur la
section de droite et la traction sur la section de gauche. EIJe est proportionneJIe a la derivee
de la traction par rapport a l'abcisse.

Ces deux equations, ou Ie module d'Young et la masse specifique entrent comme coeffi­
cients, jointes aux conditions aux limites, determinent les deux fonctions des deux variables.

Nous utilisons les notations suivantes:

x
eiwty(x)
eiwtF(x)

p(x)
E(x)
S(x)
t
w/2n

abcisse
deplacement
traction
masse specifique
module d'Young
aire d'une section droite
temps
frequence.
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La relation de comportement s'6crit:

dy
F=ES-.

dx

L'equilibre des forces s'ecrit:
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On a ainsi un systeme de deux equations differentielles lineaires du premier ordre, qu'on
peut aussi transformer en une equation du deuxieme ordre en eliminant la variable F, ce qui
donne:

1 d ( dY) 2- - ES - + w Y = O.
pSdx dx

RESOLUTION DES EQUATIONS

Nous avons obtenu un systeme du deuxieme ordre d'equations differentelles lineaires. La
solution de ce systeme depend de deux conditions aux limites.

Celles-ci peuvent etre la valeur dans une section Xl de l'amplitude du deplacement Yl et de
sa derivee dYl/dx, ou ce qui revient au meme, les valeurs de Yl et de la force Fl'

L'ensemble de ces deux quantites constitue par definition l'etat de Ie section Xl' Con­
naissant l'etat d'une section quelconque, la solution du systeme d'equations fournit l'etat
dans toute autre section, et la relation entre les etats de deux sections est lineaire, c'est­
a-dire qu'elle est representee par une matrice. Cette matrice appelee resolvante du systeme
d'equation, ou matrice de transfert, parce qu'elle permet de calculer l'etat d'une section a
partir de l'etat d'une autre section.

Nous appliquons ces considerations generales au cas particulier ou les caracteristiques
mecaniques de la barre sont constantes par morceaux.

La barre est constituee de morceaux successifs, de longueurs differentes, chacun des
morceaux etant homogene. Cela veut dire que Ie coefficient d'elasticite, la section droite, et la
masse specifique sont independants de X dans un morceau, mais peuvent varier d'un morceau
a l'autre.

Soient Yl et FlIes amplitudes du deplacement et de la traction aune extremite, Y2 et F2 a
l'autre extremite d'un morceau. II y a une relation lineaire entre les conditions aux deux
extremites

v = J~ celerite de l'onde dans Ie morceau

en posant:

(
Y2 ) = ( cos kl

F2 /w
-pSv sin kl

k=_
w

nombre d'onde
v

p~v sin kl) ( Yl )
Fl/w

cos kl

I longueur du morceau.
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La matrice ci-dessus, qui est par definition la resolvante du systeme d'equations differen­
tielles, suffit a caracteriser Ie morceau considere.

L'ensemble de deux morceaux successifs a pour resolvante Ie produit·des matrices des
deux morceaux.

On peut ainsi, par des produits de matrices, obtenir la resolvante d'une barre constituee
d'un nombre quelconque de morceaux.

Remarquons que la determinant de la resolvante est egal aI'unite, ce qui correspond aune
propriete tres generale des systemes physiques lineaires La resolvante est un element du
groupe speciallineaire sur I'espace vectoriel a deux dimensions sur Ie corps des reels (ou
groupe SL (2, R), ou groupe des matrices 2 x 2 a termes reels, et de determinant unite, ou
unimodulaires).

CHOIX DES UNITES

Nous allons etudier la resolvante d'une barre aleatoire constituee de morceaux dont les
caracteristiques sont tirees au sort independamment suivant une certaine mesure de prob­
abilite, qui est la meme pour tous les morceaux. Nous pouvons choisir arbitrairement les
unites de temps et de masse, ce qui revient it definir des variables sans dimension, bien adap­
tees pour traiter notre probleme.

L'unite de temps la plus naturelle est Ie temps moyen que met une onde pour parcourir un
morceau de barre. Nous designerons par un crochet la moyenne d'une quantite queIconque

I
pour une mesure de probabilite donnee. L'unite de temps sera la moyenne de -, soit:

v

L'unite de masse peut etre choisie de maniere que:

<pSv) = 1.

On appelle nombre de Kubo [I], Ie nombre d'ondes moyen par morceau, soit:

<kl) = W\~).

Avec les unites choisies ci-dessus, Ie nombre de Kubo est egal ala valeur de la pulsation w.
Nous verrons que Ie comportement de l'onde est different suivant que Ie nombre de Kubo

est inferieur ou superieur al'unite.

PRODUITS DE MATRICES ALEATOIRES

Vne mesure de probabilite fait correspondre, atout sous-ensemble du groupe SL(2, R), la
probabilite pour qu'une matrice tiree au hasard (conformement acette mesure) appartienne
a ce sous-ensemble.

Le mesure de probabilite de la resolvante de chaque morceau etant donnee a priori, il
s'agit de calculer la mesure de probabilite du produit de ces resolvantes, qui est par definition
Ie produit de convolution des mesures. Ce produit de convolution est une generalisation du
produit de convolution bien connu des fonctions de variables reelles.

Le support d'une mesure de probabilite est Ie plus petit sous-ensemble ferme contenant
toute matrice du groupe tiree au hasard conformement a cette mesure. Le produit de deux
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supports contient l'ensemble de tous les produits des matrices respectivement contenues
dans les supports facteurs.

II est assez intuitif que Ie support d'un produit de convolution soit Ie produit des supports,
mais cette propriete peut aussi etre demontree [2].

Le produit de convolution de plusieurs mesures identiques est une puissance de convolu­
tion. Le support de cette puissance de convolution est contenu dans Ie sous-groupe engendre
par Ie support initial commun. Par exemple, si Ie support initial ne contient que des matrices
de rotation (sous-groupe orthogonal du groupe SL(2, R)), il est evident que Ie produit de
celles-ci sera une matrice de rotation, mais cette rotation pourra etre grande meme si les
rotations initiales sont petites.

Le support d'une puissance de convolution a tendance adiffuser dans tout l'espace qui lui
est permis. Vne analogie de cette diffusion est Ie mouvement brownien, ou la probabilite de
presence d'une particule diffuse dans tout Ie volume fluide possible.

Si Ie support initial contient un ouvert d'un groupe connexe, Ie support de la puissance de
convolution diffuse dans Ie groupe entier lorsque Ie nombre de matrices augmente.

Or Ie groupe SL(2, R) n'est pas compact (les termes d'une matrice peuvent devenir
infinis tout en satisfaisant ala relation d'unimodularite).

La probabilite pour que la valeur absolue d'un terme soit grande par rapport a l'unite
augmente avec Ie nombre de facteurs dans Ie produit de matrices aleatoires. Nous allons
caracteriser cette croissance en choisissant une norme pour la matrice produit, ensuite nous
donnerons une interpretation physique.

CROIX D'UNE NORME

Designons par:

B = (C1 C2 )
C3 C4

la n~solvante constituee par Ie produit d'un grand nombre de matrices aleatoire elementaires,
de la forme:

(

COS kl

-pSv sin kl

_1 sin kl)
pSv .

cos kl

En choisissant les unites de fa<;on que la moyenne du coefficient pSv soit l'unite, les matrices
elementaires sont presque des matrices de rotation. Si on rallonge une barre en rajoutant un
morceau, la matrice B se trouve multipliee (par exemple, adroite) par une matrice qui est
presque:

ce qui donne

(

COS e
-sin e

sin e)
cos e

(
c1 cos e- C2 sin e C1 sin e+ C2 cos 0)
C3 cos 0 - C4 sin () C3 sin () + C4 cos ()

En faisant varier la longueur du morceau rajoute, les termes du haut de la matrice ont une
variation sinusoldale d'amplitude JCi + q et les termes du bas Jq + C~. On peut
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caracteriser ces amplitudes par leur moyenne quadratique, qui definit une norme pour la
matrice B, soit

IIBII =JCi+q+C~+Ci.
Cette norme n'est pas modifiee par la multiplication it droite ou it gauche par une matrice

de rotation. On pourrait multiplier cette norme par un facteur tel que la norme de la matrice
unite soit egale a l'unite, mais ce n'est pas necessaire pour nos besoins.

En fait, les matrice elementaires ne sont pas exactement des matrices de rotation, et la
norme augmente peu it peu en moyenne quand Ie nombre de morceaux augmente, confor­
mement a ce qui a ete explique au paragraphe precedent. Nous allons maintenant donner
l'interpretation physique de cette croissance de la norme.

INTERPRETATION PHYSIQUE

Nous affectons maintenant les indices 1 et 2 aux extremites d'une barre entiere, et non
plus seulement d'un marceau. La resolvante de cette barre est

et on a les equations

( Y2 ) _ B( Yl )
F2 /w - F1/w

avec la condition

C1 C4 - C2 C3 = 1.

Ces equations peuvent se resoudre par rapport aux variables Yl et Y2 , et on obtient

Supposons qu'on impose ala barre les conditions aux limites suivantes:

{
F 1 = 0
F2 donne.

Cela veut dire que l'extremite d'indice I est libre, et que l'extremite d'indice 2 est excitee
par une traction harmonique d'amplitude donnee. On a alors:

Yl
-=-
Y2 C1

Comme Ie terme C1 est grand en valeur absolue, l'amplitude de l'onde est plus petite it
l'extremite libre qU'al'extremite excitee.

Supposons maintenant qu'on echange les conditions aux deux extremites:

{
F1 donne
F2 =0.

. Y2 1
On obtlent: - = -c .

Yl 4
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L'onde harmonique est encore amortie it partir de l'extremite excitee.
La croissance en valeur absolue des termes du produit matriciel B avec Ie nombre de

facteurs correspond it un amortissement de l'onde. L'aspect paradoxal de ce fait provient
de ce que la resolvante est la solution mathematique d'un probU:me de Cauchy avec deux
conditions it une meme extremite, alors que Ie probleme physique est un probleme de
Sturm-Liouville avec une condition it chaque extremite. II n'est pas possible physiquement
d'imposer it la fois Ie deplacement et la traction it une meme extremite.

CALCUL DU TAU X MOYEN DE CROISSANCE DE LA NORME
DE LA RESOL VANTE

Pour ce calcul, nous utilisons la theorie de la representation des groupes [3].
Considerons un couple de vecteurs:

( Yla) et
F1a/ w

(
Ylb )

F1b/ w

it l'extremite 1 d'un morceau de la barre, ainsi que Ie couple correspondant it l'extremite 2.
Chaque vecteur d'un couple est relie au vecteur correspondant de l'autre couple par une
equation faisant intervenir la meme matrice B. Les produits tensoriels symetrises de ces
couples de vecteurs sont relies par une matrice D que I'on peut calculer it partir de B:

(!(Y2aF2::a~2;2bF2a/w))= D(!(YlaFI::a~I;lbFla/w))
~a~N~ ~a~N~

(

C2 2C l C2 C
2

)
avec D = Cl C3 Cl C4 + C2 C3 C2~4'

q 2C3 C4 cl
A chaque matrice B correspond une matrice D (qui en est une representation), et au

produit des matrices B correspond Ie produit des matrices D. Done la matrice D correspondant
it la barre entiere est Ie produit des matrices D de chaque morceau:

D = DID2 ... Dn.

En outre, DOUS constatons que Ie carre de la norme choisie sur Best une norme sur D,
parce que si la norme de Best nulle, eela implique que la matrice D est nulle, ce qui satisfait
les axiomes definissant une norme.

Nous pouvons done definir:

II DII = ci + q + q + q.
Nous designerons par <D), la matrice dont les termes sont les valeurs moyennes des termes
de Davee la mesure de probabilite correspondante.

Theoreme. Si D l et D2 sont deux matrices aleatoires independantes, on a [4]:

Corollaire. Si les matrices Dl , D2, ... Dn, dont Ie produit est D, sont independantes et
ont la meme valeur moyenne <Dl ), on a:
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Examinons la signification physique de cette condition d'independance qui est essentielie.
Les matrices de deux tron~ons contigus courts ne sont pas independantes en general, celJes
de tronyons longs sont independantes. On peut definir une certaine longueur de correlation.
telle que les matrices de troniYons contigus de longueur inferieure soient en general depend­
antes, et celles de tron<;ons plus longs soient en general independantes. Dans Ie cas 011

la barre est formee de morceaux homogenes, si deux tronyons successifs ont la meme longueur
et appartiennent au meme morceau homogene, leurs matrices sont egales, et ne sont done
pas independantes.

La longueur de correlation est dans ce cas, liee a la longueur moyenne d'un morceau
homogene.

Dans Ie present travail, pour etre certains que la condition d'independance soit satisfaite,
nous avons choisi, comme troniYons definissant les matrices, des morceaux homogtmes, suc­
cessivement independants par hypothese.

Les normes des deux membres de l'equation precedente sont egales:

Le calcul de la norme de D est une operation Iineaire qui comporte l'addition de quatre
termes.

Le calcul de la valeur moyenne de D est une operation lineaire qui comporte Ie calcul
d'une integrale pour chaque terme. Ces deux operations peuvent etre executees successive­
ment dans un ordre quelconque. La valeur moyenne de la norme est egale a Ia norme de la
valeur moyenne, d'ou:

Definition
On appelle rayon spectral P1 de la matrice (D1 ) Ie plus grand des modules des valeurs

propres.

Theoreme
Lorsque Ie nombre n de matrices tend vers l'infini, on a:

II<D1)"11 1
/" -> PI [2]

Le theoreme ci-dessus nous donne un moyen pratique de calculer

(IIDII)·
Definissons un coefficient (J. par:

Nous obtenons:

<II DII) -> eZan

ou:
<IIBII 2

) -> eZ
''".

Le coefficient IX caracterise Ie taux moyen de croissance de la norme de la resolvante,
c'est-a-dire l'amortissement de l'onde. On calcule ce coefficient apartir du rayon spectral de
la matrice moyenne (D1>correspondant it un marceau de barre. 11 resulte des considera­
tions anterieures que dans les hypotheses faites, Ie coefficient (J. est positif.
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Donnees numeriques

Nous avons fait Ie calcul numenque du coefficient d'amortissement moyen de deux
fa.;ons differentes pour une serie de valeurs de la frequence w. D'une part, nous avons
calcule Ie coefficient 21X apartir du rayon spectral de la matrice (D 1 ). D'autre part, nous
avons calcule Ie coefficient V3 defini par V3 = (log IIBI1 2 )/500 a partir d'une statistique
portant sur 30 barres tirees au sort suivant une mesure de probabilite definie de la fa.;on
suivante. Chaque barre comporte 500 morceaux homogenes tires au sort independemment
les uns des autres. Pour chaque morceau on tire au sort les coefficients kl et pSv qui entrent
dans la matrice B1 definie par

(

COS kl
B1 =

-pSv sin kl

_1 sinkl)
pSv .

cos kl

Chacun de ces coefficients a une probabilite possedant une densite continue dans un certain
intervalle, defini par les formules:

{

PSV = J 1 + e sin q>

kl = wJ1 + e sin q> (l + e sin 8)

ou q> et () sont des variables aleatoires dont la probabilite est definie par une densite uniforme
dans l'intervalle [0, 2n].

Le coefficient e caracterise l'amplitude des irregularites des differents tron.;ons. Si la
barre etait homogene, on aurait e = O. Si e atteignait 1, les irregularites seraient si grandes que
la masse specifique pourrait s'annuler dans certains morceaux. On a pris dans les calculs
numeriques:

e = 0,8.

Les donnees ci-dessus sont relatives au cas d'une barre dont la section est constante,

0·20r-------------------,

0'16

w

Fig. 2. 20( programme VOC, V3 programme TONI.
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ainsi que Ie coefficient d'elasticite, mais dont la masse specifique varie d'un morceau au
suivant, ainsi que la longueur du morceau. Les ordinogrammes des deux programmes de
calcul numeriques sont donnes Sur les Figs. 3 et 4.

Debut

I ntroduction de
10 matrice 0

1

~
PI-I L~L+I

L-O 02-0~

6
Iterations

°2
i L °l~ 11 0 211

p ,-p,1I0211
P1-Pdloi

L

~
Impression du
nlsu Itat PI

Fin

Fig. 3. Programme VOc. Calcul du rayon spectral Pi d'une matrice D 1 •

Calcul du rayon spectral d'une matrice (Fig. 3)

Ce calcul utilise la formule

PI = lim IID~lll/n

ou nous ecrivons pour alleger D[ au lieu de <DI ) et ou PI est Ie rayon spectral de la matrice
<DI ).

Nous prenons n = 2L OU L est un entier. Dans une boucle parcourue L fois, la matrice est
elevee au carre, et la norme du resultat est calculee. On pourrait en deduire directement Ie
rayon spectral, mais la norme augmente tres vite avec L. Pour eviter de calculer avec des
nombres trop grands, on divise chaque fois Ie carre matriciel obtenu par sa norme. II faut
alors compenser Ie resuItat de cette operation en multipliant Ie rayon spectral par la quan­
tite convenable.

Vne suite d'iterations fournit alors pour Ie rayon spectral une suite de valeurs qui con­
vergent vers une limite. On connait la progression de cette suite, parce que la norme du carre
matriciel tend lui-meme vers une limite. On peut donc prevoir it chaque fois, la valeur de la
limite du rayon spectral. En pratique, nous avons obtenu pour la limite du rayon spectral
une valeur stable en six iterations seulement.
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D'b te u

E-O,8 </>__ nombre

w_IOO,6 1--:- c-- (I 0) 1---- a leota i re
o I

0_0 ,
p5v--JI + € Sin</>

+
8-nombre

30 500 aleotolre
It~rotions Iterations ,

kt-- psvw(1 +€ sinBl,
.1_( cos kl sinkl

EJ- p5 v
I -Dsvslnklcoskl

+

0 --'-
log IleLi 1--'- C-CBv,- 30 o--o+~

~
Impression

de V,

Fig. 4. Programme TONI. Calcul d'une statistique de produits de matrices aleatoires.

Calcul d'une statistique de produits de matrices aliatoires (Fig. 4)

On calcule la matrice d'un morceau homogene en calculant deux variables aleatoires rp
et 0, puis les coefficients kl et pSv.

Ce calcul est repete 500 fois, et par multiplication, on obtient la matrice d'une barre
entiere.

On recommence ce processus 30 fois, et on a ainsi les matrices de 30 barres entieres, sur
lesquelles on peut calculer la moyenne du coefficient d'amortissement.

RESULTATS NUMERIQUES

Les resultats des calculs numeriques par les deux methodes sont compares sur les courbes
de la Fig. 2.

En abcisse est portee la frequence w.
En ordonnee, on a porte Ie coefficient d'amortissement 2a calcule apartir du rayon spec­

tral, et la moyenne V3 du logarithme du carre de la norme d'un produit de 500 matrices,
divise par 500. Cette moyenne est calculee sur une statistique de 30 epreuves.

Les valeurs de V3 sont a peu pres la moitie de celles de 2a, ce qui peut s'expliquer en
calculant completement la mesure de probabilite du coefficient d'amortissement. Ce sera
l'objet d'un prochain article.

L'allure generale des deux courbes est la meme, et presente des particularites interes­
santes.
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Lorsque Ie nombre de Kubo est inferieur al'unite, Ie coefficient d'amortissement 2ex est
proportionnel aw2

, ce qui est en accord avec les resultats theoriques que I'on peut obtenir
par des methodes d'approximation (calcul des perturbations), qui ne sont valabies que pour
les petites valeurs du nombre de Kubo, alors que la methode utilisee ici est valable pour toute
valeur de ce nombre.

Lorsque Ie nombre de Kubo est superieur al'unite, Ie coefficient d'amortissement oscille
irregulierement autour d'une valeur qui semble constante dans Ie domaine de frequence que
nous avons explore.

On peut comparer grossierement une barre aleatoire de longueur finie a un filtre passe-bas
dont Ia frequence de coupure serait egale au nombre de Kubo.

CAS EXCEPTIONNELS

Vne barre aleatoire de longueur finie peut servir d'element pour constituer une barre
periodique de longueur infinie. Le comportement de cette barre periodique est bien connu;
elle possede des bandes passantes et des bandes d'arret.

Vne bande passante correspond au cas au la matrice de la barre a des valeurs propres
imaginaires conjuguees de module unite. Cela se produit lorsque la trace de la matrice est
comprise entre - 2 et +2.

Lorsqu'on allonge la barre en lui rajoutant des elements, la trace (pour une frequence
donnee) oscille comme les termes de la matrice, avec une periode egale ala longueur d'onde,
entre des valeurs de signes contraires proportionnelles ala norme de la matrice. Vn pheno­
mene analogue se produit lorsqu'on fait varier la frequence pour une barre de longueur
donnee.

II en resulte que la largeur d'une bande passante est inversement proportionnelle a la
norme de la matrice. A la limite, lorsque la longueur de la barre aleatoire devient infinie,
chaque bande passante se reduit aun point.

Si on choisit une frequence au hasard, on a une probabilite nulle pour qU'elle soit dans
une bande passante, et une probabilite unite pour qu'elle soit dans une bande d'arret, avec Ie
coefficient moyen d'amortissement calcule plus haut.

Mais on peut toujours determiner la frequence de fac;on ace qu'elle soit dans une bande
passante.

De meme les oscillations libres du systeme existent et ont des proprietes interessantes [5].
Or si la frequence d'excitation est une frequence propre, l'amplitude de l'extremite libre peut
etre grande par rapport it celIe de l'extremite excitee. Mais ce resultat ne contredit pas ceux
que nous avons obtenus, car il n'est vrai que pour l'ensemble de barres (de probabilite
nulle) dont une frequence propre coincide avec la frequence d'excitation donnee.

CONCLUSION

Nous avons etudie la propagation d'une onde acoustique longitudinale harmonique dans
un guide aleatoire conservatif. La methode de calcul utilisee, ainsi que certaines particu­
larites des resultats sont transposables it des problemes analogues sous des hypotheses
beaucoup plus larges, dans de nombreux domaines de la physique (ondes electromagne­
tiques, mecanique quantique).

Nous trouvons qu'il y a un amortissement statistique moyen de l'onde it partir de I'extre­
mite excitee du guide, et nous savons calculer Ie coefficient d'amortissement, dans Ie cas
d'un guide homogene par morceaux. eet amortissement ne contredit pas Ie caractere con-
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servatif du guide d'ondes, car l'energie de Ia source d'excitation ne penetre pas dans Ie
guide: l'onde est reflechie vers Ia source.

Lorsque Ie nombre de Kubo est inferieur a l'unite, Ie coefficient d'amortissement est
proportionnel au carre de Ia frequence. Lorsque Ie nombre de Kubo est superieur aI'unite,
Ie coefficient d'amortissement reste voisin d'une valeur independante de Ia frequence.
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Pe3IOMe - rapMoHHlIecKHe IIP0,lJ;OJThHbIe aKycTHlIecKHe BOJIHbI pacilpOCTpaHlUOTC}l 'lepe3
TOHKHe yrrpyme IIpyTKH, YIlPyr~ IIOCTOmHa}l, IIJIOTHOCTb H ce'leHH}l KOTOpbIX }lBMIOTC}l
CJIY'laHHbIMH cPYHK~H}lMH paCCTOmH}l IIO OCH ,lJ;0 TO'lKH B036ylK,!l;eHH}l. qacTH'lHOe OTPIDKeHHe
Ha ITOCJIe,lJ;OBaTeJThHbIX HeO,lJ;HOpO,lJ;HOCTJIX IIOHHlKaeT Cpe,lJ;HIOIO aMIlJIHTy)J;y BOJIH ITO 3KC1I0­
HeH~HaJIbHOMY 3aKOHy OT TO'lKH B036YlK,!l;eHHlI. )l;aeTclI MeTO,lJ; paC'leTa cpe,lJ;Hero K03cP«l>H­
~HeHTa ,lJ;eMIl«l>HpOBaHHlI, H pe3YJThTaTbI cpaBHHBalOTClI C 'lHCJIeHHbIMH HCKYCCTBeHHbIMH
BOcrrpOH3Be,lJ;eHHlIMH MO,lJ;eJIHpOBaHHlI.


