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Résumé—Une onde acoustique longitudinale sinusoidale en fonction du temps se propage
dans une barre élastique dont le coefficient d’élasticité, la mas se spécifique et la section droite
sont des fonctions aléatoires le long de I’axe. L’onde se réfléchit partiellement sur les inhomo-
généités successives qu’elle rencontre, de sorte que son amplitude diminue en moyenne de fagon
exponentielle & partir du point d’excitation. Une méthode de calcul du coefficient d’amortis-
sement moyen est donnée, et le résultat est comparé avec des simulations numériques.

Abstract—Harmonic longitudinal acoustical waves are propagated through elastic thin rods
whose elastic constant, density and crosssectional area are random functions of distance along
the bar from a point of excitation. Partial reflection on successive inhomogeneities reduce the
mean amplitude of waves, according to an exponential law, from the point of excitation. A
method for calculating the mean damping coefficient is given, and the result is checked against
numerical simulations.

INTRODUCTION

Le présent rapport étudie la propagation d’ondes acoustiques longitudinales dans une
barre élastique dont les caractéristiques (coefficient d’élasticité, section droite, masse spéci-
fique) varient de fagon aléatoire le long de I’axe.

Si 'onde est sinusoidale en fonction du temps, son amplitude diminue en moyenne de
fagon exponentielle & partir de 'extrémité de la barre ol se fait I’excitation. Cela provient
de ce que ’onde se réfléchit partiellement sur chacune des inhomogénéités qu’elle rencontre
le long de la barre, de sorte que ’onde transmise est d’autant plus petite que la barre est
plus longue. Une barre de longueur infinie est totalement réfléchissante.

Ce résultat a une valeur statistique; il est vrai pour presque toutes les valeurs de la fréqu-
ence, mais il est en défaut dans des cas isolés, par exemple lorsque la fréquence est celle
d’une vibration libre de la barre.

HYPOTHESES GENERALES

Nous supposons que le mouvement de chaque élément de la barre est purement longitu-
dinal, paralléle 4 I’axe. Cette condition est difficile & réaliser, car sans précaution parti-
culiére, la barre prend une oscillation de flexion, par résonance paramétrique. Pour éviter
cet effet parasite, il faut un guide convenable.

Nous supposons en outre que chaque section droite de la barre a un mouvement de transla-
tion, c’est-a-dire que tous les points d’une méme section ont la méme vitesse paralléle a ’axe
de la barre. En fait une section comprimée longitudinalement subit une dilatation radiale,
perpendiculairement a I’axe (par suite du coefficient de Poisson). Notre hypothése néglige
Peffet de ce mouvement secondaire, ce qui revient a supposer que les longueurs d’onde sont
plus grandes que le diamétre de la barre.
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Le mouvement d’une section est alors entiérement défini par le déplacement d’un seul
point de cette section. Ce déplacement est fonction de I’abcisse de la section. ¢'est-a-dire de
la distance & une extrémité de la barre, mesurée lorsque cette derniére est au repos (Fig. 1).

C T

Fig. 1. Epreuve d’une barre aléatoire 4 section constante par morceaux.

D’autre part le déplacement dépend du temps, c’est une fonction de deux variables:
abcisse et temps.

Nous supposons que les caractéristiques mécaniques de la barre au voisinage d’une
section sont suffisamment bien définies par le coefficient d’élasticité (module d’Young), la
section droite et la masse spécifique au repos. Cela signifie que la barre est un solide élastique
linéaire conservatif et de caractéristiques constantes dans le temps. La traction exercée, a
travers une section, par la partie de la barre située a droite de la section sur la partie située 4
gauche est également une fonction de deux variables: abcisse et temps.

Nous supposons que le module d’Young, la section droite et la masse spécifique sont des
fonctions discontinues de ’abcisse, et que ces fonctions sont aléatoires: les calculs que nous
faisons ne sont pas relatifs 4 une barre déterminée, mais a un ensemble de barres différentes,
de caractéristiques plus ou moins voisines, ¢t définies par une mesure de probabilité donnée.

Nous nous limiterons au cas des ondes harmoniques, c’est-a-dire sinusoidales en fonction
du temps.

EQUATIONS DU MOUVEMENT

L’état de 1a barre est défini par deux fonctions (déplacement et traction) de deux variables
(abcisse et temps). Ces deux fonctions ne sont pas quelconques, mais satisfont aux deux lois
de la mécanique: relation de comportement et équilibre des forces.

La relation de comportement est la loi de Hooke. Elle exprime qu’au voisinage de chaque
section droite, 1a traction est proportionnelle a I'allongement relatif & cet endroit.

L’équilibre des forces peut s’écrire pour le morceau de barre situé entre deux sections
infiniment voisines. La force d’inertie est proportionnelle 4 la dérivée seconde du déplace-
ment par rapport au temps. La force de traction est la différence entre la traction sur la
section de droite et la traction sur la section de gauche. Elle est proportionnelle & la dérivée
de la traction par rapport a ’abcisse.

Ces deux équations, ot le module d”Young et la masse spécifique entrent comme coeffi-
cients, jointes aux conditions aux limites, déterminent les deux fonctions des deux variables.

Nous utilisons les notations suivantes:

x abcisse
e':‘" y(x) déplacement
e™F(x) traction

p(x) masse spécifique

E(x) module d’Young

S(x) aire d’une section droite
t temps

wi2n fréquence.
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La relation de comportement s’écrit:

L’équilibre des forces s’écrit:
Sw?y + dF 0
w — =0.
p Y dx

On a ainsi un systéme de deux équations différentielles linéaires du premier ordre, qu'on
peut aussi transformer en une équation du deuxiéme ordre en éliminant la variable F, ce qui

donne:
1 d dy
— — |ES— 2y = Q.
dex(E dx)+wy

RESOLUTION DES EQUATIONS

Nous avons obtenu un systéme du deuxiéme ordre d’équations différentelles linéaires. La
solution de ce systéme dépend de deux conditions aux limites.

Celles-ci peuvent &tre la valeur dans une section x,; de 'amplitude du déplacement y, et de
sa dérivée dy,/dx, ou ce qui revient au méme, les valeurs de y, et de la force F;.

L’ensemble de ces deux quantités constitue par définition I'état de le section x;. Con-
naissant Pétat d’une section quelconque, la solution du systéme d’équations fournit ’état
dans toute autre section, et la relation entre les états de deux sections est linéaire, c’est-
a-dire qu’elle est représentée par une matrice. Cette matrice appelée résolvante du systéme
d’équation, ou matrice de transfert, parce qu’elle permet de calculer I’état d’une section a
partir de I’état d’une autre section.

Nous appliquons ces considérations générales au cas particulier ou les caractéristiques
mécaniques de la barre sont constantes par morceaux.

La barre est constituée de morceaux successifs, de longueurs différentes, chacun des
morceaux étant homogéne. Cela veut dire que le coefficient d’élasticité, la section droite, et la
masse spécifique sont indépendants de x dans un morceau, mais peuvent varier d’un morceau
a l'autre,

Soient y, et F; les amplitudes du déplacement et de la traction & une extrémité, y, et F, a
lautre extrémité d’un morceau. Il y a une relation linéaire entre les conditions aux deux
extrémités

.
( ¥, ) _ cos kl Esm kil s
Fylw F/w

— pSv sin kl cos kl
en posant:

E .
v= \/ ; célérité de ’onde dans le morceau

<k = %} nombre d’onde

] longueur du morceau.
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La matrice ci-dessus, qui est par définition la résolvante du systéme d’équations différen-
tielles, suffit 4 caractériser le morceau considéré,

L’ensemble de deux morceaux successifs a pour résolvante le produit-des matrices des
deux morceaux.

On peut ainsi, par des produits de matrices, obtenir la résolvante d’une barre constituée
d’un nombre quelconque de morceaux. _

Remarquons que la déterminant de la résolvante est égal a "unité, ce qui correspond a une
propriété trés générale des systémes physiques linéaires La résolvante est un élément du
groupe spécial linéaire sur ’espace vectoriel a4 deux dimensions sur le corps des réels (ou
groupe SL (2, R), ou groupe des matrices 2 x 2 a termes réels, et de déterminant unité, ou
unimodulaires).

CHOIX DES UNITES

Nous allons étudier la résolvante d’une barre aléatoire constituée de morceaux dont les
caractéristiques sont tirées au sort indépendamment suivant une certaine mesure de prob-
abilité, qui est la méme pour tous les morceaux. Nous pouvons choisir arbitrairement les
unités de temps et de masse, ce qui revient & définir des variables sans dimension, bien adap-
tées pour traiter notre probléme.

L’unité de temps la plus naturelle est le temps moyen que met une onde pour parcourir un
morceau de barre. Nous désignerons par un crochet la moyenne d’une quantité quelconque

pour une mesure de probabilité donnée. L’unité de temps sera la moyenne de -, soit:
v

!
v
L’unité de masse peut étre choisie de maniére que:

{pSvy =1.

On appelle nombre de Kubo [1], le nombre d’ondes moyen par morceau, soit:

kD = w<£>.
v

Avec les unités choisies ci-dessus, le nombre de Kubo est égal a la valeur de la pulsation w.
Nous verrons que le comportement de ’onde est différent suivant que le nombre de Kubo
est inférieur ou supérieur a 'unité.

PRODUITS DE MATRICES ALEATOIRES

Une mesure de probabilité fait correspondre, a tout sous-ensemble du groupe SL(2, R), la
probabilité pour qu’une matrice tirée au hasard (conformément a cette mesure) appartienne
A ce sous-ensemble.

Le mesure de probabilité de la résolvante de chaque morceau étant donnée a priori, il
s’agit de calculer la mesure de probabilité du produit de ces résolvantes, qui est par définition
le produit de convolution des mesures. Ce produit de convolution est une généralisation du
produit de convolution bien connu des fonctions de variables réelles.

Le support d’'une mesure de probabilité est le plus petit sous-ensemble fermé contenant
toute matrice du groupe tirée au hasard conformément & cette mesure. Le produit de deux
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supports contient ’ensemble de tous les produits des matrices respectivement contenues
dans les supports facteurs.

11 est assez intuitif que le support d’un produit de convolution soit le produit des supports,
mais cette propriété peut aussi étre démontrée [2].

Le produit de convolution de plusieurs mesures identiques est une puissance de convolu-
tion. Le support de cette puissance de convolution est contenu dans le sous-groupe engendré
par le support initial commun. Par exemple, si le support initial ne contient que des matrices
de rotation (sous-groupe orthogonal du groupe SL(2, R)), il est évident que le produit de
celles-ci sera une matrice de rotation, mais cette rotation pourra étre grande méme si les
rotations initiales sont petites.

Le support d’une puissance de convolution a tendance a diffuser dans tout I’espace qui lui
est permis. Une analogie de cette diffusion est le mouvement brownien, ou la probabilité de
présence d’une particule diffuse dans tout le volume fluide possible.

Si le support initial contient un ouvert d’un groupe connexe, le support de la puissance de
convolution diffuse dans le groupe entier lorsque le nombre de matrices augmente.

Or le groupe SL(2, R) n’est pas compact (les termes d’une matrice peuvent devenir
infinis tout en satisfaisant a la relation d’unimodularité).

La probabilité pour que la valeur absolue d’un terme soit grande par rapport a I'unité
augmente avec le nombre de facteurs dans le produit de matrices aléatoires. Nous allons
caractériser cette croissance en choisissant une norme pour la matrice produit, ensuite nous
donnerons une interprétation physique.

CHOIX D’UNE NORME

(G
B= (C3 04)

la résolvante constituée par le produit d’un grand nombre de matrices aléatoire élémentaires,
de la forme:

Désignons par:

1
ki — si
cos 50 sin k/

—pSv sin kl cos ki

En choisissant les unités de fagon que la moyenne du coefficient pSvsoit I’unité, les matrices
¢lémentaires sont presque des matrices de rotation. Si on rallonge une barre en rajoutant un
morceau, la matrice B se trouve multipliée (par exemple, & droite) par une matrice qui est

presque:
cos @ sin 6
—sin 6 cos 6

(C1 cos @ — C,sin 0 C;sinf + C, cos 60
Cycos0 —C,sin 0 C;sinf+ Cycos 0

ce qui donne

En faisant varier la longueur du morceau rajouté, les termes du haut de la matrice ont une
variation sinusoidale d’amplitude ./C? + C3 et les termes du bas \/C2 +C2. On peut
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caractériser ces amplitudes par leur moyenne quadratique, qui définit une norme pour la
matrice B, soit

IBl =/C?+C2+C%+C2

Cette norme n’est pas modifiée par la multiplication 4 droite ou & gauche par une matrice
de rotation. On pourrait multiplier cette norme par un facteur tel que la norme de la matrice
unité soit égale a I’'unité, mais ce n’est pas nécessaire pour nos besoins.

En fait, les matrice élémentaires ne sont pas exactement des matrices de rotation, et la
norme augmente peu a peu en moyenne quand le nombre de morceaux augmente, confor-
mément a ce qui a été expliqué au paragraphe précédent. Nous allons maintenant donner
I'interprétation physique de cette croissance de la norme.

INTERPRETATION PHYSIQUE

Nous affectons maintenant les indices 1 et 2 aux extrémités d’une barre entiére, et non
plus seulement d’un morceau. La résolvante de cette barre est

— Cl CZ
b= (Cs 04)

(23) =5(e)

CIC4~C2C3:1.

et on a les équations

avec la condition

Ces équations peuvent se résoudre par rapport aux variables y, et y,, et on obtient

-2 5 )
Y2 C;\—1 Ci/\Fzn
Supposons qu’on impose a la barre les conditions aux limites suivantes:
F, =0
F, donné.

Cela veut dire que 'extrémité d’indice 1 est libre, et que I'extrémité d’indice 2 est excitée
par une traction harmonique d’amplitude donnée. On a alors:

Comme le terme C, est grand en valeur absolue, I'amplitude de I'onde est plus petite &
Pextrémité libre qu’a lextrémité excitée.
Supposons maintenant qu’on échange les conditions aux deux extrémites:

F, donné
F2 = 0

1
On obtient: Y2 _ .
» Cs
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L’onde harmonique est encore amortie a partir de 'extrémité excitée.

La croissance en valeur absolue des termes du produit matriciel B avec le nombre de
facteurs correspond & un amortissement de 'onde. L’aspect paradoxal de ce fait provient
de ce que la résolvante est la solution mathématique d’un probléme de Cauchy avec deux
conditions & une méme extrémité, alors que le probleéme physique est un probléme de
Sturm-Liouville avec une condition & chaque extrémité. Il n’est pas possible physiquement
d’imposer a la fois le déplacement et la traction & une méme extrémité.

CALCUL DU TAUX MOYEN DE CROISSANCE DE LA NORME
DE LA RESOLVANTE
Pour ce calcul, nous utilisons la théorie de la représentation des groupes [3].
Considérons un couple de vecteurs:

Via Y1ib )
et
(F la/W) (F 1b/w

a Pextrémité 1 d’un morceau de la barre, ainsi que le couple correspondant & ’extrémité 2.
Chaque vecteur d’un couple est relié au vecteur correspondant de I’autre couple par une
équation faisant intervenir la méme matrice B. Les produits tensoriels symétrisés de ces
couples de vecteurs sont reliés par une matrice D que I’on peut calculer & partir de B:

Y2aY2p Y1aV1p
320 Faopw + V2u Faapw) | = DL 3O1a Fropw + Y16 Fiagw)
F2a F2b/w2 Fla Flb/w2
2 2C,C, c2
avec D=|C,C, C,Ci+C,C,4 C,C4}.
C? 2C, C, C?

A chaque matrice B correspond une matrice D (qui en est une représentation), et au
produit des matrices Bcorrespond le produit des matrices D. Donc la matrice D correspondant
a la barre entiére est le produit des matrices D de chaque morceau:

D=D,D,...D,.

En outre, nous constatons que le carré de la norme choisie sur B est une norme sur D,
parce que si la norme de B est nulle, cela implique que la matrice D est nulle, ce qui satisfait
les axiomes définissant une norme.

Nous pouvons donc définir:

1D =C? + CZ+C%+ C2.

Nous désignerons par { D), la matrice dont les termes sont les valeurs moyennes des termes
de D avec la mesure de probabilité correspondante.

Théoréme. Si D, et D, sont deux matrices aléatoires indépendantes, on a [4]:
{DyD;> = (D Y{Dy).

Corollaire. Si les matrices Dy, D,, ... D,, dont le produit est D, sont indépendantes et
ont la méme valeur moyenne {D,>, on a:

(DY =<Dy)"
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Examinons la signification physique de cette condition d’indépendance qui est essentieile.
Les matrices de deux trongons contigus courts ne sont pas indépendantes en général, celles
de trongons longs sont indépendantes. On peut définir une certaine longueur de corrélation.
telle que les matrices de trongons contigus de longueur inférieure soient en général dépend-
antes, et celles de trongons plus longs soient en général indépendantes. Dans le cas ol
la barre est formée de morceaux homoggnes, si deux trongons successifs ont la méme longueur
et appartiennent au méme morceau homogeéne, leurs matrices sont égales. et ne sont done
pas indépendantes.

La longueur de corrélation est dans ce cas, liée a la longueur moyenne d’un morceau

homogene.

Dans le présent travail, pour étre certains que la condition d’indépendance soit satisfaite,
nous avons choisi, comme trongons définissant les matrices, des morceaux homogénes, suc-
cessivement indépendants par hypothése.

Les normes des deux membres de I’équation précédente sont égales:

1D = 1D

Le calcul de la norme de D est une opération linéaire qui comporte 'addition de quatre
termes.

Le calcul de la valeur moyenne de D est une opération lin€aire qui comporte le calcul
d’une intégrale pour chaque terme. Ces deux opérations peuvent étre exécutées successive-
ment dans un ordre quelconque. La valeur moyenne de la norme est égale 4 la norme de la
valeur moyenne, d’oli:

DI = KDy
Définition
On appelle rayon spectral p; de la matrice (D, ) le plus grand des modules des valeurs
propres.
Théoréme
Lorsque le nombre » de matrices tend vers linfini, on a:
<KDYy 2]

Le théoréme ci-dessus nous donne un moyen pratique de calculer

<D
Définissons un coefficient o par;
pr =€
Nous obtenons:
D)y — e
ou:
CIBfZY — e,

Le coefficient « caractérise le taux moyen de croissance de la norme de la résolvante,
Cest-a-dire 'amortissement de 'onde. On calcule ce coefficient & partir du rayon spectral de
la matrice moyenne {D,) correspondant & un morceau de barre. Il résulte des considéra-
tions antérieures que dans les hypothéses faites, le coefficient o est positif.
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Données numériques

Nous avons fajt le calcul numérique du coefficient d’amortissement moyen de deux
fagons différentes pour une série de valeurs de la fréquence w. D’une part, nous avons
calculé le coefficient 2« a partir du rayon spectral de la matrice (D). D’autre part, nous
avons calculé le coefficient V5 defini par v; = (log ||B||>>/500 & partir d’une statistique
portant sur 30 barres tirées au sort suivant une mesure de probabilité définie de la fagon
suivante. Chaque barre comporte 500 morceaux homogenes tirés au sort indépendemment
les uns des autres. Pour chaque morceau on tire au sort les coefficients k/ et pSv qui entrent
dans la matrice B; définie par

1
cos ki — sin k/
B, = pSv

—pSv sin kil cos ki

Chacun de ces coefficients a une probabilité possédant une densité continue dans un certain
intervalle, défini par les formules:

pSv=\/1+ssin<p
kI =w/1 + esin ¢ (1 + ¢sin 6)

ou ¢ et 0 sont des variables aléatoires dont la probabilité est définie par une densité uniforme
dans Pintervalle [0, 2x].

Le coefficient & caractérise ’amplitude des irrégularités des différents trongons. Si la
barre était homogene, on aurait & = 0. Si ¢ atteignait 1, les irrégularités seraient si grandes que
la masse spécifique pourrait s’annuler dans certains morceaux. On a pris dans les calculs
numériques:

e=0,8.

Les données ci-dessus sont relatives au cas d’une barre dont la section est constante,

0-20

[eR 1Y o
2a

o12r

0-08 |-
v3

004 |~

¢} ] !
ol 025 063 1-6 4 10

Fig. 2. 2« programme VOC, V3 programme TONI.
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ainsi que le coefficient d’élasticité, mais dont la masse spécifique varie d’un morceau au

suivant, ainsi que la longueur du morceau. Les ordinogrammes des deux programmes de
calcul numériques sont donnés sur les Figs. 3 et 4.

Début

Introduction de
la matrice O,

|

p—1 L ——Ll+1
[ ~——— () Dy~—o 012

6
Itérations

sL

2
P <—“'DIHDQH

2]
2 Jp— 2
: [0z}

p=—p|1Pyf

Impression du
résultat p,

Fin

Fig. 3. Programme VOC. Calcul du rayon spectral p; d’une matrice D,.

Calcul du rayon spectral d’une matrice (Fig. 3)
Ce calcul utilise la formule

py = lim | DY||*/"

n-—aoc

ol nous écrivons pour alléger D, au lieu de (D, et ol p, est le rayon spectral de la matrice
{Dy>.

Nous prenons n = 2% ol L est un entier. Dans une boucle parcourue L fois, la matrice est
élevée au carré, et la norme du résultat est calculée. On pourrait en déduire directement le
rayon spectral, mais la norme augmente trés vite avec L. Pour éviter de calculer avec des
nombres trop grands, on divise chaque fois le carré matriciel obtenu par sa norme. Il faut
alors compenser le résultat de cette opération en multipliant le rayon spectral par la quan-
tité convenable.

Une suite d’itérations fournit alors pour le rayon spectral une suite de valeurs qui con-
vergent vers une limite. On connait la progression de cette suite, parce que la norme du carré
matriciel tend lui-méme vers une limite. On peut donc prévoir a chaque fois, la valeur de la
limite du rayon spectral. En pratique, nous avons obtenu pour la limite du rayon spectral
une valeur stable en six itérations seulement.
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Début
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30 500 aléatoire
Itérations Itérations i

4 - psve(l +esinB)
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Impression
de V5

Fin

Fig. 4. Programme TONI. Calcul d’une statistique de produits de matrices al€atoires.

Calcul d’une statistique de produits de matrices aléatoires (Fig. 4)

On calcule la matrice d’'un morceau homogéne en calculant deux variables aléatoires ¢
et 0, puis les coefficients k/ et pSv.

Ce calcul est répété 500 fois, et par multiplication, on obtient la matrice d’une barre
entiére.

On recommence ce processus 30 fois, et on a ainsi les matrices de 30 barres entiéres, sur
lesquelles on peut calculer la moyenne du coefficient d’amortissement.

RESULTATS NUMERIQUES

Les résultats des calculs numériques par les deux méthodes sont comparés sur les courbes
de la Fig. 2.

En abcisse est portée la fréquence w.

En ordonnée, on a porté le coefficient d’amortissement 2a calculé a partir du rayon spec-
tral, et la moyenne V3 du logarithme du carré de la norme d’un produit de 500 matrices,
divisé par 500. Cette moyenne est calculée sur une statistique de 30 épreuves.

Les valeurs de V3 sont a peu prés la moitié de celles de 2, ce qui peut s’expliquer en
calculant complétement la mesure de probabilité du coefficient d’amortissement. Ce sera
I’objet d’un prochain article.

L’allure générale des deux courbes est la méme, et présente des particularités intéres-
santes.
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Lorsque Je nombre de Kubo est inférieur a.I'unité, le coefficient d’amortissement Zx est
proportionnel a w?, ce qui est en accord avec les résultats théoriques que I"on peut obtenir
par des méthodes d’approximation (calcul des perturbations), qui ne sont valables que pour
les petites valeurs du nombre de Kubo, alors que la méthode utilisée ici est valable pour toute
valeur de ce nombre.

Lorsque le nombre de Kubo est supérieur a I'unité, le coefficient d’amortissement oscille
irréguliérement autour d’une valeur qui semble constante dans le domaine de fréquence que
nous avons exploré.

On peut comparer grossiérement une barre aléatoire de longueur finie a un filtre passe-bas
dont la fréquence de coupure serait égale au nombre de Kubo.

CAS EXCEPTIONNELS

Une barre aléatoire de longueur finie peut servir d’élément pour constituer une barre
périodique de longueur infinie. Le comportement de cette barre périodique est bien connu;
elle posséde des bandes passantes et des bandes d’arrét.

Une bande passante correspond au cas oll la matrice de la barre a des valeurs propres
imaginaires conjuguées de module unité. Cela se produit lorsque la trace de la matrice est
comprise entre —2 et +2.

Lorsqu’on allonge la barre en lui rajoutant des éléments, la trace (pour une fréquence
donnée) oscille comme les termes de la matrice, avec une période égale a la longueur d’onde,
entre des valeurs de signes contraires proportionnelies 4 la norme de la matrice. Un phéno-
méne analogue se produit lorsqu’on fait varier la fréquence pour une barre de longueur
donnée.

Il en résulte que la largeur d’une bande passante est inversement proportionnelle a la
norme de la matrice. A la limite, lorsque la longueur de la barre aléatoire devient infinie,
chaque bande passante se réduit a un point.

Si on choisit une fréquence au hasard, on a une probabilité nulle pour gqu’elle soit dans
une bande passante, et une probabilité unité pour qu’elle soit dans une bande d’arrét, avec le
coefficient moyen d’amortissement calculé plus haut.

Mais on peut toujours déterminer la fréquence de fagon a ce qu’elle soit dans une bande
passante.

De méme les oscillations libres du systéme existent et ont des propriétés intéressantes [5].
Or si la fréquence d’excitation est une fréquence propre, 'amplitude de I'extrémité libre peut
étre grande par rapport a celle de I’extrémité excitée. Mais ce résultat ne contredit pas ceux
que nous avons obtenus, car il n’est vrai que pour Pensemble de barres (de probabilité
nulle) dont une fréquence propre coincide avec la fréquence d’excitation donnée.

CONCLUSION

Nous avons étudié la propagation d’une onde acoustique longitudinale harmonique dans
un guide aléatoire conservatif. La méthode de calcul utilisée, ainsi que certaines particu-
larités des résultats sont transposables 4 des problémes analogues sous des hypothéses
beaucoup plus larges, dans de nombreux domaines de la physique (ondes électromagné-
tiques, mécanique quantique).

Nous trouvons qu’il y a un amortissement statistique moyen de ’onde & partir de I'extré-
mité excitée du guide, et nous savons calculer le coefficient d’amortissement, dans le cas
d’un guide homogeéne par morceaux. Cet amortissement ne contredit pas le caractére con-
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servatif du guide d’ondes, car I’énergie de la source d’excitation ne pénétre pas dans le
guide: ’onde est réfléchie vers la source.

Lorsque le nombre de Kubo est inférieur a I'unité, le coefficient d’amortissement est
proportionnel au carré de la fréquence. Lorsque le nombre de Kubo est supérieur a 'unité,
le coefficient d’amortissement reste voisin d’une valeur indépendante de la fréquence.
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W N =

w o

Pe3tome — 'apMOHAYECKHE NPOIONBHLIE AKYCTHYECKHE BOJHEL DACIpPOCTPAHSIOTCH depes
TOHKHE YIPYrHe IPYTKH, YOpyras WOCTOSHHAA, IUIOTHOCTh U CEYEHHS KOTODHIX ABJISIOTCH
CITyyalHpIMK GYHKIHMAMH PacCTOSIHHSA IO OCH OO TOYKHA BO30yxaeHusa, YacTAIHOE OTpakeHHe
Ha TIOCNECIOBATENbHEIX HEOMHOPOOHOCTAX NMOHIKAET CPENHIOW aMIUIATYAY BOJH IO 3KCHO-
HEHIMATLHOMY 3aKOHY OT TO4KH Bo3Oyxmenus. Jlaercs MeTOn pacuyera CpeOHEro Kodddmu-
HeHTa AeMIIQMpPOBAHHS, M DE3YIbTATH! CPABHUBAIOTCA ¢ YHCICHHBIMHA MCKYCCTBEHHBIMHM
BOCITPOM3BEICHUAMH MOZEIAPOBAHHS.



